koorio.com
海量文库 文档专家
当前位置:首页 >> 数学 >>

广东省东莞市2012-2013学年高一数学下学期期末考试试题(A卷)新人教A版(扫描版)_图文

广东省东莞市 2012-2013 学年高一数学下学期期末考试试题(A 卷) 新人教 A 版

1

2

3

东莞市 2012—2013 学年度第二学期教学质量检查 高一数学(A) 参考答案
4

一、选择题(本大题共 10 小题,每小题 5 分,共 50 分. ) 题号 答案 1 C 2 D 3 C 4 D 5 C 6 C 7 A 8 B 9 C 10 D

二、填空题(本大题共 4 小题,每小题 5 分,共 20 分. ) 11.

?
3

12. 2

13. 4 2

14. 1 ?

? 4

三、解答题(本大题共 6 小题,共 80 分.) 15.(本小题满分 12 分) 解:(1)观察向上的点数共有 6 种结果,分别为 1,2,3,4,5,6. ????2 分 将事 件 “ 点数大 于 3 ” 记为 A , 则 事 件 A 包 含 4 点, 5 点 , 6 点三 种 情 况. ????4 分 ∴ P ( A) ?

3 1 ? , 6 2

????5 分

故事件“点数大于 3”的概率是

1 . 2

????6 分

(2)事件 B 包含 2 点,4 点两种情况,所以 P ( B ) ?

2 1 ? . 6 3

???8 分

又因为事件 C 表示“点数小于 5” ,所以事件 C 表示“点数不小于 5” ,包含 5 点, 6 点两种情况, 所以 P (C ) ? 又 因 为 事 件

2 1 ? . 6 3
与 事 件

????10 分

B

C













P( ? B

1 2 (P ? .) C? ???? ? 11 分 3 3 2 所以事件 B ? C 发生的概率为 . 3 )C ?

1 ( P ?) B 3

????12 分

16.(本小题满分 12 分) 解:(1)设该同学的数学、物理成绩年级排名的方差分别为 s1 , s 2 ,
2 2

8 ? 20 ? 16 ? 24 ? 30 ? 22 ? 20 , 6 13 ? 18 ? 22 ? 22 ? 24 ? 21 y? ? 20 . ??2 分 6
由已知条件得 x ? 故

1 140 2 s12 ? [(8 ? 20)2 ? (20 ? 20)2 ? (16 ? 20)2 ? (24 ? 20)2 ? (30 ? 20)2 ? (22 ? 20)2 ] ? ? 46 6 3 3
5

,??4 分

1 2 s2 ? [(13 ? 20) 2 ? (18 ? 20) 2 ? (22 ? 20) 2 ? (22 ? 20) 2 ? (24 ? 20) 2 ? (21 ? 20) 2 ] ? 13 6
.???6 分
2 2 ∴ s1 ,故该同学的物理成绩更加稳定. ? s2

????8 分 ????9 分

? ? x ? 20 ? 0.45? 20 ? 11 , ? ? y ?b (2)根据最小二乘法原理 a
? ? 0.45 x ? 11 , 所以回归方程为 y ? ? 29 . 将 x ? 40 代入,有 y

????10 分 ????11 分

所 以 可 以 估 计 在 这 次 考 试 中 该 同 学 的 物 理 成 绩 的 年 级 排 名 是 第 29 名. ????12 分

17.(本小题满分 14 分) 解 : (1) 因 为 函 数 f ( x) 的 图 象 上 一 个 最 高 点 为 M ( ????1 分 又 f ( x ) 的图象的相邻两对称轴之间的距离等于

?
6

, 2) , 所 以

A ? 2.

? T ? 2? ,可知 ? , T ? ? ? , 2 2 2 ?

? ? 2 ,所以 f ( x) ? 2sin(2 x ? ? ) .
又由最高点 M ( 解得:? ?

????2 分

?
6

, 2) , in (2 得 2s

?
6

? ? ) ?2 ? 6

?

, 所以 2 ?

?
6

?? ?

?
2

? 2 k? ( k ? Z ) ,
????3 分

? 2 k? ( k ? Z ) ,

又因为 0 ? ? ? 令

?
2

,所以 ? ?

?
6

,即 f ( x) ? 2sin(2 x ?

?
6

).


????4 分 解 得

2k? ?

?
2

? 2x ?

?
6

? 2k? ?

k? ?

?
6

? x ? k? ?

2? (k ? Z ) ,????6 分 3

3? 2

(k ? Z )

所以 f ( x ) 的单调递减区间为 [k? ?

?

6

, k? ?

2? ](k ? Z ) . 3

????7 分

(2) 设 函 数 f ( x ) 的 图 象 左 移 m 个 单 位 后 所 对 应 的 函 数 为 g ( x) , 则

g ( x) ? 2 s i nx(?2 m ?2 .?9)分 6
要使 g ( x) ? 2 sin( 2 x ? 2m ?

?

?

6

) 为偶函数,则有 g (? x) ? g ( x) ,即
6

2sin(?2 x ? 2m ?
化简得 cos(2m ? 故有 2m ?

?

?

) ? 2sin(2 x ? 2m ? ) , 6 6 )?0,
????11 分

?

????10 分

?
6

6 ? 所以当 k ? 0 时, m 取最小正值 , ????13 分 6 ? 即 m 取 时, 可使函数 f ( x ) 的图象向左平移 m 个单位后所得图象对应的函数是偶 6
函数. ?14 分 18.(本小题满分 14 分) 解: (1) ∵ a / / b ,∴ 2 sin ? ? cos ? ? 0 , ① 又 sin ? ? cos ? ? 1, ②
2 2

?

?
2

6

? k? , m ?

?

?

k? (k ? Z ) . 2

????12 分

????2 分 ????3 分

? ? 5 5 sin ? ? , sin ? ? ? , ? ? ? 5 或? 5 由①②解得 ? ? ?cos? ? 2 5 , ?cos? ? ? 2 5 . ? ? 5 5 ? ? ? 5 sin ? ? ? , ? 3 ? 5 又因为 ? ? (? , ? ) ,所以有 ? . 2 ?cos? ? ? 2 5 . ? 5 ?
(2) 因 为

????5 分

????6 分

c

?? o

s ? ? (

? )

? ?c , o 所 ?s

c 以 ?

o

s

cos ? cos ? ? sin ? sin ? ? ?

10 .????8 分 10

又 sin ? ? ?

2 5 5 10 5 2 5 cos ?? si ? n? ? , cos ? ? ? ,所以 ? ,即 5 5 5 5 10
????10 分

2 c o? s ? s? in ?

2 , 2
7 2 5 2 或? . 10 10

又 sin

2

? ? cos2 ? ? 1,解得 sin ? ?
?
2 , ? ) ,所以 sin ? ?

???12 分

又因为 ? ? (

7 2 . 10

????14 分

7

19.(本小题满分 14 分) 解:(1)? OD ? OA ? AD , 而 AD ? 2DB ,即 AD ? ????1 分

2 2 2 AB ? OB ? OA , ????3 分 3 3 3 2 2 1 2 所以 OD ? OA ? ( OB ? OA ) ? OA ? OB . ????4 分 3 3 3 3 1 2 又? OD ? OA ? mOB ,且 OA, OB 不共线 ? m ? . ????6 分 3 3 1 2 (说明:由 OD ? OA ? mOB 及 A 、 D 、 B 三点共线直接得出 m ? ,只得 2 3 3
分.) (2)

E、D、F 三点共线,? ED // EF ,因此可设 ED ? ? EF .
又? OE ? xOA, OF ? yOB ,

????7 分

1 2 1 2 ? ED ? OD ? OE ? ( OA ? OB) ? xOA ? ( ? x)OA ? OB ,???9 分 3 3 3 3
而 EF ? OF ? OE ? yOB ? xOA, 所以有 ( ? x)OA ? ????10 分 ????11 分

1 3

2 OB ? ? (? xOA ? yOB ) . 3

?1 ?1 ? 3 ? 3?, ? x ? ? ? x , ? ? ?3 ?x ?? ? OA, OB 不共线,? ? ? 2 ? ?y, ? 2 ? 3?. ? ?y ?3 ?
消去 ? ,得

????13 分

1 2 ? ? 3 为定值. x y

????14 分

20.(本小题满分 14 分) 解: (1)∵直线 l1 过点 A(3,0) ,且与圆 x ? y ? 1 相切,易知斜率存在,故可设直线 l1 的方程
2 2



y ? k ( x ? 3)

, ????1 分



kx ? y ? 3k ? 0 ,
∴圆心 O(0,0) 到直线 l1 的距离为 d ?

3k k 2 ?1

.

????2 分

8

又直线 l1 与圆 O 相切,所以 d ? r ? 1 ,即

3k k 2 ?1

? 1 ,解得 k ? ?

2 . 4

?3 分

∴ 直 线 l1 的 方 程 为

y??

2 ( x ? 3) , 即 x ? 2 4

y 2 ? ?3 和 0

x ? 2 2y ?3 ? 0 .

????4 分

(2)设 R ( x, y ) 为所求轨迹上任意一点. ∵ OR ? AR ,∴ OR
2

? AR ? OA ,

2

2

????5 分
2 2

∴ ( x 2 ? y 2 ) ? [(x ? 3) 2 ? y 2 ] ? 32 ? 0 2 ,整理得 x ? y ? 3x ? 0 .

???6 分

又 弦 MN 的 中 点 R 一 定 在 圆 内 , 所 以 动 点 R 的 轨 迹 方 程 为

x2 ? y 2 ? 3x ? 0 ( 0? x ?

1 ) ?7 分 . 3

2 2 证明: (3) ∵圆 O 的方程为 x ? y ? 1 ,令 y ? 0 , 得 x ? ?1 ,即 P(?1,0), Q(1,0) .又直线 l 2

过点 A 且与 x 轴垂直,所以直线 l 2 的方程为 x ? 3 . 设 H ( s, t ) , 则直线 PH 的方程为 y ?

????8 分

t ( x ? 1) , 令 x ? 3 ,得点 P? 的坐标为 s ?1

(3,

4t ) ,?9 分 s ?1
同理可得 Q ?(3,

2t ), s ?1

????10 分

(3, 2 ∴以 P ?Q ? 为直径的圆的圆心坐标为
为 ( x ? 3) ? ( y ?
2

3s ? 1 s ?3 2 t) ? ( 2 t) . 2 s ?1 s ?1
O

3s ? 1 s?3 t) t | ,所以圆方程 ,半径为 | 2 s ?1 s ?1
????11 分

又 点

H ( s, t ) 圆 在

上 , 所 以

s2 ? t 2 ? 1 , 整 理 得

( x 2 ? y 2 ? 6 x ? 1) ?

6s ? 2 y ? 0 . ??12 分 t
2

令 y ? 0 , 从 而 有 x ? 6 x ? 1 ? 0 , 解 得 x ? 3 ? 2 2 , 即 点 (3 ? 2 2 ,0) 和

(3 ? 2 2,0) 总满足该圆方程,所以以 P ?Q ? 为直径的圆总过定点 , 定点坐标为 (3 ? 2 2 ,0) 和 (3 ? 2 2,0) . ??14 分

9


推荐相关:

广东省东莞市2012-2013学年高一数学下学期期末考试试题....doc

广东省东莞市2012-2013学年高一数学下学期期末考试试题(A卷)新人教A版(扫描版)_数学_高中教育_教育专区。广东省东莞市 2012-2013 学年高一数学下学期期末考试...


广东省东莞市2012-2013学年高一下学期期末考试生物试题....doc

广东省东莞市2012-2013学年高一下学期期末考试生物试题(A卷) (1) -


广东省市202高一数学下学期期末考试试题(a卷)新人教a版.doc

广东省市202高一数学下学期期末考试试题(a卷)新人教a版_数学_高中教育_教育专区。文档均来自网络,如有侵权请联系我删除文档 珠海市 20122013 学年度第二学期...


广东省珠海市202-2013学年高一数学下学期期末考试试题(....doc

广东省珠海市202-2013学年高一数学下学期期末考试试题(A卷)新人教A版带答案 - 珠海市 2012~2013 学年度第二学期期末学生学业质量监测 高一数学试题(A 卷)及...


广东省实验中学2012-2013学年高一数学下学期期末试卷(....doc

广东省实验中学2012-2013学年高一数学下学期期末试卷(含解析)新人教A版_数学_高中教育_教育专区。2012-2013 学年广东省实验中学高一(下)期末数学试卷 参考答案与...


...中学2012-2013学年高一数学下学期期末考试试题(含解....doc

广东省实验中学2012-2013学年高一数学下学期期末考试试题(含解析)新人教A版_...1. (5 分)直线 xy+1=0 的倾斜角为( ) A.60° B.120° C.150°...


...南山区2012-2013学年高一数学下学期期末考试试题新....doc

广东省深圳市南山区2012-2013学年高一数学下学期期末考试试题新人教A版_2


广东省广州六中2012-2013学年高一数学下学期期末学业水....doc

广东省广州六中2012-2013学年高一数学下学期期末学业水平测试试题新人教A版带答案 - 广州市第六中学 20122013 学年第二学期期末学业水平测试 高一数学期末考试...


广东省惠州市2012-2013学年高一数学下学期基础测试及期....doc

广东省惠州市2012-2013学年高一数学下学期基础测试及期末考试试题新人教A版_数学_高中教育_教育专区。惠州市 2012-2013 学年第二学期基础测试及期末考试 高一数学...


...市2012-2013学年高一数学下学期期末考试试题(B卷)(....doc

广东省珠海市2012-2013学年高一数学下学期期末考试试题(B卷)(含解析)新人教A版 - 珠海市 2012~2013 学年度第二学期期末学生学业质量监测 高一数学试题(B 卷)...


...2012-2013学年高一数学下学期期末试题新人教A版.doc

广东省汕头市金山中学2012-2013学年高一数学下学期期末试题新人教A版_数学_高中教育_教育专区。高一数学期末考试综合试题 汕头市金山中学 2012~2013 学年度第二学期...


广东省深圳市宝安区2012-2013学年高一数学下学期期末调....doc

广东省深圳市宝安区2012-2013学年高一数学下学期期末调研测试试题新人教A版_数学_高中教育_教育专区。2012-2013下学年第二学期宝安区期末调研测试卷 高一 数学 一...


广东省肇庆市2012-2013学年高一数学下学期教学质量评估....doc

广东省肇庆市2012-2013学年高一数学下学期教学质量评估试题(含解析)新人教A版_数学_高中教育_教育专区。试卷类型:A 肇庆市中小学教学质量评估 20122013 学年第...


...市2012-2013学年高一数学下学期期末考试试题(含解析....doc

四川省攀枝花市2012-2013学年高一数学下学期期末考试试题(含解析)新人教A版_...2. (5 分)若过点 A(m,1) ,B(1,m)的直线与直线 x3y+5=0 垂直...


广东深圳市宝安中学2012-2013学年高一数学下学期期中考....doc

广东深圳市宝安中学2012-2013学年高一数学下学期期中考试试题 文(含解析)新人教A版_数学_高中教育_教育专区。2012-2013 学年广东省深圳市宝安中学高一(下)期中...


...市2012-2013学年高一数学下学期期末考试试题(含解析....doc

四川省攀枝花市2012-2013学年高一数学下学期期末考试试题(含解析)新人教A版1_数学_高中教育_教育专区。2012-2013 学年四川省攀枝花市高一()期末数学试卷一、...


山东省2012-2013学年高一数学下学期期末考试试题_文_新....doc

山东省2012-2013学年高一数学下学期期末考试试题_文_新人教A版_数学_高中教育_教育专区。2011-2012 学年高一下学期期末考试数学试题本试卷共 4 页,分第Ⅰ卷(...


...附中2012-2013学年高一数学下学期期末考试试题新人....doc

福建省师大附中2012-2013学年高一数学下学期期末考试试题新人教A版带答案 - 福建师大附中 20122013 学年度下学期期末考试 高一数学试题 (满分:150 分,时间:120...


...附中2012-2013学年高一数学下学期期末考试试题(含解....doc

福建省师大附中2012-2013学年高一数学下学期期末考试试题(含解析)新人教A版_数学_高中教育_教育专区。福建师大附中 20122013 学年度下学期期末考试 高一数学试题(...


四川省乐山市2012-2013学年高一数学下学期教学质量检测....doc

四川省乐山市2012-2013学年高一数学下学期教学质量检测试题(扫描版)新人教A版 - 四川省乐山市 2012-2013 学年高一数学下学期教学质量检测试题 (扫 描版)新人教...

网站首页 | 网站地图
All rights reserved Powered by 酷我资料网 koorio.com
copyright ©right 2014-2019。
文档资料库内容来自网络,如有侵犯请联系客服。zhit325@126.com