koorio.com
海量文库 文档专家
赞助商链接
当前位置:首页 >> 数学 >>

浙江嘉兴市2012—2013学年第二学期期末检测高一数学(B)(纯WORD版)


嘉兴市 2012-2013 学年第二学期期末检测 高一数学(B)试题卷(2013.6)
一、选择题 1.角 ?100? 所在的象限为 A.第一象限 B.第二象限

C.第三象限

D.第四象限

2.已知数列 ?an ? 满足: a1 ? 1, an ? an?1 ? 2(n ? 2, n ? N * ) ,则 a5 的值为 A.5 B.7 C.9 D.11

3.已知角 ? 为钝角,且 sin ? ? A. ? 3 B. ?

1 ,则 tan ? 的值为 2
C.

3 3

3 3

D. 3

4.已知数列 ?an ? 的前四项为 1, 3, 5, 7 ,则数列 ?an ? 的通项公式可能为 A. an ? 2n ?1 5.函数 y ? 2sin x cos x 是 A.周期为 ? 的奇函数 C.周期为 2? 的奇函数 B.周期为 ? 的偶函数 D.周期为 2? 的偶函数 B. an ? 2n ? 1 C. an ?

2n ? 1

D. an ? 2n ? 1

6.在 ?ABC 中,若 a ? 3, b ? 1, B ? 30? ,则角 A 的值为 A. 30 ? B. 60 ? C. 120? D. 60 ? 或 120?

7.已知等差数列 ?an ? 的前 n 项和为 Sn ,且 S2n?1 ? S2 n?1 ? S2 ? 24 ,则 an ?1 的值为 A.6 B.8 C.12 D.24

8.已知函数 f ( x) ? 2sin(? x ? ? )(? ? 0,| ? |? A. ?

?
2

) 的部分图像如图所示,则 ? 的值为
D.

?
4

B. ?

?
8

C.

? 8

? 4

9.若右图是函数 f ( x) ? sin 2 x 和函数 g ( x) 的部分图像,则 g ( x) 的图象可能是由 f ( x ) 的图象

? 个单位得到 4 ? C.向右平移 个单位得到 3
A.向右平移

7? 个单位得到 24 3? D.向右平移 个单位得到 8
B.向右平移

10.已知公差为 d (d ? 0) 的等差数列 ?an ? 满足: a2 , a4 , a7 成等比数列,若 Sn 是 ?an ? 的前 n 项和,则 的值为 A.

S10 S5

12 7

B.

3 2

C.3

D.2

11. 设 P 为函数 f ( x) ?

1 ? 1 sin(? x ? ) 的图象上的一个最高点, Q 为函数 g ( x ) ? cos ? x 图像上的一个最 2 4 2

低点,则 | PQ | 的最小值为

A.

5 4

B.

41 4

C.

7 4

D.

9 4

12. ?ABC 中, sin A,sin B,sin C 成等差数列,且 tan C ? 2 2 ,则

b 的值为 c

A.

9 10

B.

3 2 4

C.

10 11

D.

9 3 8

二、填空题 13.计算: sin120? ? 14.在 ?ABC 中,若

。 。 。

sin A cos B ? ,则 B ? a b

15.已知等比数列 ?an ? 的前 n 项和为 Sn , a1 ? 1, S3 ? 13 ,则公比 q ?

16.等差数列 ?an ? 的公差为 1,它的前 n 项和为 Sn ,且 S12 是 ?Sn ? 中唯一的最小项,则 a6 的取值范围 为 。 。

17.已知公差不为 0 的等差数列 ?an ? 的前 n 项和为 Sn ,若 a22 ? a32 ? a7 2 ? a82 ,则 S9 ?

2 18 .已知 f ( x) ? 2 x ? 2 x ? 1 ,若关于 x 的方程 f (sin x )? a 在 [0, ? ) 上恰有两解,则 a 的取值集合

为 三、解答题



19.已知 ? 为锐角,且 cos ? ?

? 3 ,求 sin(? ? ) 和 tan 2? 的值. 5 3

20.如图,在 ?ABC 中, B ? 45? , D 是 BC 边上的一点, AD ? 5 , AC ? 7 , DC ? 3 . (1)求 ? ADC 的大小; (2)求 AB 的长.

A

B

D
第 20 题图

C

21.已知函数 f ( x) ? 2a sin x cos x ? 2 cos2 x ,且 f ( ) ? 2 3 (1)求 a 的值,并写出函数 f ( x ) 的最小正周期; (2)求函数 f ( x ) 在 [0,

?

?
2

] 内的最值和取到最值时的 x 值.

22.已知递增的等差数列 {a n } 满足: a 2 a 3 ? 45 , a1 ? a4 ? 14 (1)求数列 {a n } 的通项公式及前 n 项和 S n ; (2)设 bn ?
an ? 1 ,求数列 {bn bn?1 } 的前 n 项和 Tn . Sn

23.在 ?ABC 中,三个内角 A, B , C 所对的边分别为 a , b , c ,若 a ? 3c sin A ? a cos C . (1)求角 C 的大小; (2)若 c ? 2 ,求 ?ABC 周长的取值范围.

24.已知数列 {a n } 的前 n 项和为 S n ,且 7a n ? S n ? 8 . (1)求数列 {a n } 的通项公式; (2)设 bn ? a n?1 ? (2n ? 1) ,是否存在常数 m ? N * ,使 bn ? bm 恒成立,若不存在说明理由,若存在 求 m 的值.

嘉兴市 2012—2013 学年第二学期期末检测 高一数学(B)
一、选择题(每小题 3 分,共 36 分) 1.C; 7.A; 2.C; 8.D; 3.B; 9.C; 4.A; 10.C; 5.A; 11.A; 6.D; 12.C.

参考答案

(2013.6)

二、填空题(每小题 3 分,共 18 分) 13.
3 ; 2

14. 45? ; 17.0;

15.3 或-4;

16. ( ?7,?6) ;

1 18. { ,1} 2

三、解答题(有 6 小题,共 46 分) 19.解:∵ ? 为锐角,且 cos ? ? 则 sin(? ?

3 4 4 ,∴ sin? ? , tan ? ? 5 3 5
……3 分

?
3

)?

1 3 4?3 3 sin? ? cos ? ? ; 2 2 10

8 24 . tan 2? ? ? 3 ?? 2 7 1 ? tan ? 1 ? 16 9 2 tan ?
20.解: (1)∵ cos ?ADC ?

……6 分

25 ? 9 ? 49 1 ?? 2? 5? 3 2

∴ ?ADC ? 120? ……3 分 (2)在 ?ABD中, ?ADB ? 60? , AD ? 5 , B ? 45? 由正弦定理:
5 3 5 6 AB AD ? ? ,得 AB ? . ? 2 2 sin 60? sin 45? 2 2

……6 分

21.解: (1)∵ f ( ) ? 2 ,代入得 a ? 3 3 则 f ( x ) ? 3 sin 2 x ? cos 2 x ? 1 ? 2 sin(2 x ? 得T ?

?

……2 分

?
6

)?1
……4 分

2? ?? . 2

(2) f ( x ) ? 2 sin(2 x ? ∵0? x ? 当 2x ? 当 2x ?

?
6

)?1

?
2 ? ?

,∴

?
6

? 2x ?

?

7 ? ? 6 6
时, f ( x ) max ? 3 ……6 分 ……8 分

?
6

?
2

时,即 x ?

?
6

?
6

7? ? 时,即 x ? 时, f ( x ) min ? 0 6 2

?a 2 a 3 ? 45 22.解: (1) ? ?a 2 ? a 3 ? 14

即 a 2 , a 3 是方程 x 2 ? 14x ? 45 ? 0 的两根,且 a 2 ? a 3 解得 a 2 ? 5, a 3 ? 9 , a n ? 4n ? 3 ……2 分 ……4 分

a1 ? a n ? n ? 2n 2 ? n 2 4n ? 2 2 (2) bn ? 2 ? 2n ? n n 4 1 1 bn bn?1 ? ? 4( ? ) n( n ? 1) n n?1 Sn ?
Tn ? b1 b2 ? b2 b3 ? ? ? bn bn?1 ? 4(1 ? 1 4n . )? n?1 n?1

……8 分

23.解: (1) sin A ? 3 sin C sin A ? sin A cos C 消去 sin A 得 1 ? 3 sinC ? cos C

1 ? ,解得 C ? ; 6 2 3 (2)周长 C ? a ? b ? c ? 2 R(sin A ? sin B) ? 2
则 sin(C ?

?

)?

……3 分

?

2

2 4 3 3 [sin A ? sin( ? ? A)] ? 2 ? ( cos A ? sin A) ? 2 3 2 3 3 2 2

3 1 ? ? cos A ) ? 2 ? 4 sin( A ? ) ? 2 2 2 6 2 ? ? 5 ∵ A ? (0, ? ) ,∴ A ? ? ( , ? ) 3 6 6 6 得周长的取值范围为 (4,6] . ? 4(sin A

……6 分

……8 分

24. (本题 10 分) 解: (1)∵ 7a n ? S n ? 8 ① 则 7a n?1 ? S n?1 ? 8 ② ①-②得 7a n ? 7a n?1 ? a n ? 0 ,即 令 n ? 1 ,得 a 1 ? 1
an 7 ? ( n ? 2) a n ?1 8

……2 分 ……3 分 ……4 分

7 ∴ a n ? ( ) n ?1 8 7 (2)记 bn ? ( ) n ? (2n ? 1) 8 7 7 bn?1 ? bn ? ( ) n?1 (2n ? 3) ? ( ) n (2n ? 1) 8 8

7 14n ? 21 16n ? 8 7 ? 2n ? 13 ? ( )n ( ? ) ? ( )n ( ) 8 8 8 8 8
显然 n ? 6 时, bn?1 ? bn , n ? 6 时, bn?1 ? bn , 故 (bn ) max ? b7 ,即 m ? 7 .

……8 分

…10 分


赞助商链接
推荐相关:

...年高一下学期期末学情调研测试化学试题(纯word版,含...

江苏省南京市2013-2014学年高一下学期期末学情调研测试化学试题(纯word版,含答案) (1)_数学_高中教育_教育专区。南京市 2013——2014 学年度第二学期期末学情...


...高一年级期末质量抽测物理试卷及答案(纯word版)

昌平区2015—2016学年第二学期高一年级期末质量抽测物理试卷及答案(纯word版)_...A.秒表 B.刻度尺 C.天平 D.游标卡尺 (2)某实验小组打出了三条纸带,发现...


湖北省黄冈市2013-2014学年第二学期期末调研考试高二物...

湖北省黄冈市2013-2014学年第二学期期末调研考试高二物理试卷(纯word版)_数学_高中教育_教育专区。黄冈市 2013-2014 学年第二学期期末调研考试 高二物理试卷一、选...


2013年广州市一模理科数学试题及答案(纯word版)

2013年广州市一模理科数学试题及答案(纯word版)_数学_高中教育_教育专区。试卷类型:A 2013 年广州市普通高中毕业班综合测试(一) 数学(理科) 2013.3 本试卷共 ...


...学年高二上学期期末考试数学(文)试题(纯word版)

北京市海淀区2013-2014学年高二上学期期末考试数学(文)试题(纯word版) - 海淀区高二年级第一学期期末练习 数学(文科) 2014.01 学校 班级 姓名 成绩 一、选择....


2012-2013上学期期末东城区九年级数学试题及答案,纯word

2012-2013上学期期末东城区九年级数学试题及答案,纯word - 东城区 2012—2013 学年第学期期末统一检测 初三数学试题 学校 班级 姓名 2013.1 考号 1.本试卷...


...2014学年高一第二学期期中考试化学试卷纯Word版含解...

河北省保定市2013-2014学年高一第二学期期中考试化学试卷纯Word版含解析_理化生...( ) A. Na2O 和 SiO2 B.冰和金刚石熔化 C.氯化 钠和蔗糖熔化 D.碘和...


江苏省扬州市2012-2013学年度第一学期期末考试高三语文...

江苏省扬州市2012-2013学年度第学期期末考试高三语文试卷(纯word版)_语文_...庇护 辅弼 辟谣 刚愎自用 ... B.怫然 黼黻 佛祖 ... C.讥诮 捎带 剑鞘 ...


2012北京高考数学文科(纯word版,含答案)

2012北京高考数学文科(纯word版,含答案)_计算机软件...2012 年普通高等学校招生全国统一考试 数学 () (...B = ( ) (A) ( ?? , ? 1) 2.在复平面...


...学年八年级上学期期末测试数学试卷(纯word解析版)(...

黑龙江大庆房顶中学2013-2014学年八年级上学期期末测试数学试卷(纯word解析版)(...下列计算正确的是( ) A.a3+a2=2a5 B.(﹣2a3)2=4a6 C.(a+b)2=a2+...

网站首页 | 网站地图
All rights reserved Powered by 酷我资料网 koorio.com
copyright ©right 2014-2019。
文档资料库内容来自网络,如有侵犯请联系客服。zhit325@126.com