koorio.com
海量文库 文档专家
赞助商链接
当前位置:首页 >> 数学 >>

必修5:数列的概念与简单表示方法


1. 数列的概念与简单表示方法 2. 等差数列 3. 等差数列的前 n 项和 4. 等比数列 5. 等比数列的前 n 项和

数列的概念与简单表示方法
定义:按照一定顺序排列着的一列数称为 数列 (sequence of number ). 数列中的每一个数叫做这个数列的 项 。 数列中的每一项和它的序号有关, 排在第一位的数称为这个数列的第一项 (通常也叫做首项) 排在第二位的数称为这个数列的第 2 项,排在第 n 位的称为这个数列的第 n 项,所以,数 列的一般形式可以写成: a1 , a2 , a3 , a3 , a4 , ? , an , ? , 简记为 {an } , 数列的分类:项数有限的数列叫做 有穷数列 ,项数无限的数列叫做无穷数列。 我们也可以按照数列中每一项随序号变化的情况对数列进行分类: 从第二项起,每一项都不小于它的前一项的数列叫做递增数列; 从第二项起,每一项都不大于它的前一项的数列叫做递减数列; 各项都相等的数列叫做常数列; 从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列叫做摆动数列

数列的表示方法 数列可以看成以正整数集 N*(或者它的有限子集{1 , 2 , 3,.... , n} 为定义的函数值 反过来,对于函数 y=f(x) ,如果 f(i) (i=1,2,3, ... ,)有意义,那么我们可以得到一个数列 f(1),f(2),f(3), ... , f(n) , ... , 如果数列 {an } 的第 n 项与序号 n 之间可以用一个公式来表示,那么这个公式叫做这个数列

的通项公式。 根据数列的通项公式就可以写出数列 Eq:写出下面数列的一个通项公式,使它的前四项分别是下列各数: (1)1, ?

1 1 1 , ,? ; 2 3 4

(2)2, 0 ,2, 0;

与函数一样,数列同样可以用图像,列表等方法来表示,数列的图像是一系列孤立的点 如: an ? 2n 可以列表,画图。

Eq:如果一个数列 {an } 的首项 a1 =1,从第二项起每一项等于它的前一项的 2 倍再加 1,即

an ? 2an?1 ? 1 (n>1) 。写出这个数列的前五项
像这样给出数列的方法叫做递推法,其中 an ? 2an?1 ? 1 (n>1) 称为递推公式。

※相同(相等)数列:如果两个数列的每一项都有相同则两个数列相等

用适当的数填空
(1)1,3, ( ( 2) ),7 52 ? 1 5 1 ), 4?5 ),

2 2 ? 1 32 ? 1 , ,( 2 3 1 1 (3) ? , ,( 1? 2 2 ? 3

观察下面数列的特点,用适当的数填空,并写出 每个数列的一个通项公式:

?1? 2, 4, ? ?, 16, 32, ? ?, 128, ? ? 2?? ?, 4, 9, 16, 25, ? ?, 49, ? ? 3 ? -1, ? 4 ?1,
1 , 2 2,

? ?,

1 1 1 ,? , , 4 5 6 5,

? ?, ?
7, ?

? ?, 2,

? ?,

数列的概念与简单表示法练习
一.选择题 1.下列解析式中不是数列 1, ?1,1, ?1,1? ,的通项公式的是( . )

A. an ? (?1)n

B. an ? (?1)n?1

C. an ? (?1)n?1

D. an ? )

n ?1?,,为奇数 1 n为偶数

2.数列 2,5, 2,11?, 的一个通项公式是( 2 A. an ? 3n ? 3 B. an ? 3n ?1

C. an ? 3n ? 1

D. an ? 3n ? 3 )项.

3.已知数列 ?an ? , an ? A. 9 B. 10

1 1 是这个数列的第( (n ? N ? ) ,那么 120 n(n ? 2)
C. 11 D. 12 )

4.数列 ?an ? , an ? f (n) 是一个函数,则它的定义域为( A. 非负整数集 C. 正整数集或其子集 B. 正整数集 D. 正整数集或 ?1,2,3,4,?, n?

5.已知数列 ?an ? , an ? 2n2 ?10n ? 3 ,它的最小项是( A. 第一项 B. 第二项 C. 第三项

) D. 第二项或第三项 )

6.已知数列 ?an ? , a1 ? 3, a2 ? 6 ,且 an?2 ? an?1 ? an ,则数列的第五项为( A. 6 二.填空题 7.已知数列 ?an ? , an ? kn ? 5, 且a8 ? 11 ,则 a17 ? 8.已知 f ( x) ? log2 ( x2 ? 7) , an ? f (n) ,则 ?an ? 的第五项为 9.数列 15 , 24 , 35 , 48 , 63 ,? , 的一个通项公式为
2 5 10 17 26

B. ?3

C. ?12

D. ?6

. . . .

10.已知数列 ?an ? 满足 a1 ? ?2 , an ?1 ? 2 ? 2an ,则 a4 ? 1 ? an 三.解答题 11.已知数列 ?an ? 中, a1 ? 3, a10 ? 21 ,通项 an 是项数 n 的一次函数, ①求 ?an ? 的通项公式,并求 a2005 ; ②若 ?bn ? 是由 a2 , a4 , a6 , a8 ,?, 组成,试归纳 ?bn ? 的一个通项公式.

12.已知 ?an ? 满足 a1 ? 3, an?1 ? 2an ? 1 ,试写出该数列的前 5 项,并用观察法写出这个数

列的一个通项公式.

13.已知数列

中,

(1) 围;

,且

对任意 n∈N*恒成立,求实数 λ 的取值范

(2)

,求常数

的值

14 根据各个数列的首项和递推公式,写出它的前五项,并归纳出通项公式 .(1) a1 =0, a n ?1 = an +(2n-1) (n∈N);

(2) a1 =1, a n ?1 =

2a n (n∈N); an ? 2

(3) a1 =3, a n ?1 =3 an -2 (n∈N).


赞助商链接
推荐相关:

【数学】2.1《数列的概念与简单表示法》教案(新人教A版...

【数学】2.1《数列的概念与简单表示法》教案(新人教A版必修5)(3课时) - 知识改变命运, 知识改变命运,学习成就未来 第二章数列 课题: §2.1 数列的概念与...


高二人教A版必修5教案精选:2.1 数列的概念与简单表示法

高二人教A版必修5教案精选:2.1 数列的概念与简单表示法 - 《斐波那契数列》教学设计 一、教材分析: 本节是高中数学必修 5《数列》的一篇阅读思考的内容。 本节...


数学必修五第二章第一节数列的概念及简单的表示方法练习卷

数学必修五第二章第一节数列的概念及简单的表示方法练习卷_高一数学_数学_高中教育_教育专区。高二数学必修 5数列的概念与简单表示法》练习题一、选择题 1、下...


...版高中数学必修5第二章《数列的概念与简单表示法》...

最新人教版高中数学必修5第二章《数列的概念与简单表示法》示范教案 - 2.1 数列的概念与简单表示法? 2.1.1 数列的概念与简单表示法(一)?? 从容说课 本节...


高中数学北师大版必修5:2.1.1数列的概念与简单表示法(...

高中数学北师大版必修5:2.1.1数列的概念与简单表示法(教案)_数学_高中教育_教育专区。高中数学北师大版必修5:2.1.1数列的概念与简单表示法(教案) ...


高中数学必修5《数列的概念及简单表示法(二)》最新导学案

高中数学必修5数列的概念简单表示法(二)》最新导学案 - 2、1、2 数列的概念简单表示法(二) 一. 学习目标 知识与技能:了解数列的递推公式,明确递推...


高中数学新人教a版必修5习题 2.1 数列的概念与简单表示法2

高中数学新人教a版必修5习题 2.1 数列的概念与简单表示法2 - 数列的递推公式 A组 基础巩固 ) 1.已知数列{an},a1=1,an=2an-1-1(n>1,n∈N*),则 ...


...版必修5)配套练习:2.1 数列的概念与简单表示法

高中数学(人教版必修5)配套练习:2.1 数列的概念与简单表示法 - 第二章 2.1 一、选择题 1.下列有关数列的说法正确的是( ) ①同一数列的任意两项均不可能...


...版高中数学必修5第二章《数列的概念与简单表示法》...

最新人教版高中数学必修5第二章《数列的概念与简单表示法》教材习题点拨 - 教材习题点拨 练习 1.答案: n an 1 21 2 33 …… 5 69 …… 12 153 …… n...


数学人教A版必修5第二章2.1数列的概念与简单表示法(第1...

数学人教A版必修5第二章2.1数列的概念与简单表示法(第1课时) (2) - 数学,全册上册下册,期中考试,期末考试,模拟考试,单元测试,练习说课稿,备课教案导学案学案

网站首页 | 网站地图
All rights reserved Powered by 酷我资料网 koorio.com
copyright ©right 2014-2019。
文档资料库内容来自网络,如有侵犯请联系客服。zhit325@126.com