koorio.com
海量文库 文档专家
当前位置:首页 >> >>

悉尼06年HSC数学B考试试卷


2006

H I G H E R S C H O O L C E R T I F I C AT E
E X A M I N AT I O N


Mathematics Extension 2


General Instructions ? Reading time – 5 minutes ? Working time – 3 hours ? Write using black or blue pen ? Board-approved calculators may be used ? A table of standard integrals is provided at the back of this paper ? All necessary working should be shown in every question

Total marks – 120 ? Attempt Questions 1–8 ? All questions are of equal value

412

Total marks – 120 Attempt Questions 1–8 All questions are of equal value Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Marks Question 1 (15 marks) Use a SEPARATE writing booklet.

(a)

? x dx . Find ? 2 ? 9 ? 4x

2

? dx (b) By completing the square, find ? 2 . ? x ? 6x +13

2

(c)

(i)

Given that

16x ? 43

( x ? 3) ( x + 2)
2

can be written as a b x ?3 c x+2

3

16x ? 43

( x ? 3) ( x + 2)
2

=

( x ? 3)

2

+

+

,

where a, b and c are real numbers, find a, b and c.

? 16x ? 43 dx . (ii) Hence find ? 2 ? ( x ? 3) ( x + 2)

2

? (d) Evaluate ? te? t dt . ?0

2

3

(e)

Use the substitution t = tan

θ to show that 2
? 3 dθ 1 = log 3 . ? 2 ?π sin θ
2 2π

3

– 2 –


Marks Question 2 (15 marks) Use a SEPARATE writing booklet. Let z = 3 + i and w = 2 – 5i. Find, in the form x + iy, (i) z2 (ii) z w (iii) w . z 1
1
1


(a)

(b)

(i)

Express

3 ? i in modulus-argument form.

2
2
1


(ii) Express

(

3 ?i

)

7

in modulus-argument form. 3 ?i

(iii) Hence express

(

)

7

in the form x + iy.

(c)

Find, in modulus-argument form, all solutions of z3 = –1.

2


i (d) The equation z ? 1 ? 3i

+ z ? 9 ? 3

= 10 corresponds to an ellipse in the Argand diagram. (i) Write down the complex number corresponding to the centre of the ellipse.
(ii) Sketch the ellipse, and state the lengths of the major and minor axes. (iii) Write down the range of values of arg(z) for complex numbers z corresponding to points on the ellipse.
1


3
1


– 3 –


Marks Question 3 (15 marks) Use a SEPARATE writing booklet.

(a)

The diagram shows the graph of y = ?(x). The graph has a horizontal asymptote at y = 2. y y = ? (x) 2

O

3

x

Draw separate one-third page sketches of the graphs of the following: (i) y = ( ? ( x )) y= 1 ?( x )
2

2

(ii) (iii)

2 2

y = x ?( x ) .

Question 3 continues on page 5

– 4 –


Marks Question 3 (continued)

(b)

The diagram shows the graph of the hyperbola x2 y2 ? =1. 144 25 y

O

x

(i)

Find the coordinates of the points where the hyperbola intersects the x-axis. Find the coordinates of the foci of the hyperbola. Find the equations of the directrices and the asymptotes of the hyperbola.

1

(ii) (iii)

2 2

(c)

Two of the zeros of P (x) = x4 – 12x3 + 59x2 – 138x + 130 are a + ib and a + 2ib, where a and b are real and b > 0. (i) (ii) Find the values of a and b. Hence, or otherwise, express P (x) as the product of quadratic factors with real coefficients. 3 1

End of Question 3

– 5 –


Marks Question 4 (15 marks) Use a SEPARATE writing booklet.

(a)

The polynomial p(x) = ax3 + bx + c has a multiple zero at 1 and has remainder 4 when divided by x + 1. Find a, b and c.

3

(b) The base of a solid is the parabolic region x2 ≤ y ≤ 1 shaded in the diagram. y

3

y = x2 1

O

x

Vertical cross-sections of the solid perpendicular to the y-axis are squares. Find the volume of the solid.

(c)

? 1? ? 1? ? 1? Let P ? p, ? , Q ? q, ? and R ?r , ? be three distinct points on the hyperbola ? r? ? p? ? q? xy = 1. (i) Show that the equation of the line, , through R, perpendicular to PQ, 1 is y = pqx ? pqr + . r Write down the equation of the line, m, through P, perpendicular to QR. The lines and m intersect at T. Show that T lies on the hyperbola. 2

(ii) (iii)

1 2

Question 4 continues on page 7

– 6 –


Marks Question 4 (continued)

(d)

A

K

M

B

P

L

C

In the acute-angled triangle ABC, K is the midpoint of AB, L is the midpoint of BC and M is the midpoint of CA. The circle through K, L and M also cuts BC at P as shown in the diagram. Copy or trace the diagram into your writing booklet. (i) (ii) (iii) Prove that KMLB is a parallelogram. Prove that ∠KPB = ∠KML . Prove that AP ⊥ BC. 1 1 2

End of Question 4

– 7 –


Marks Question 5 (15 marks) Use a SEPARATE writing booklet.

(a)

A solid is formed by rotating the region bounded by the curve y = x ( x – 1 )2 and the line y = 0 about the y-axis. Use the method of cylindrical shells to find the volume of this solid. Show that cos (α + β ) + cos (α ? β ) = 2 cos α cos β .

3

(b)

(i)

1

(ii) Hence, or otherwise, solve the equation cosθ + cos 2θ + cos 3θ + cos 4θ = 0 for 0 ≤ θ ≤ 2π .

3

(c)

A particle, P, of mass m is attached by two strings, each of length , to two fixed points, A and B, which lie on a vertical line as shown in the diagram.

A

α

NOT TO SCALE

P

B

The system revolves with constant angular velocity ω about AB. The string AP makes an angle α with the vertical. The tension in the string AP is T1 and the tension in the string BP is T2 where T1 ≥ 0 and T2 ≥ 0. The particle is also subject to a downward force, mg, due to gravity. (i) Resolve the forces on P in the horizontal and vertical directions. 2 1

(ii) If T2 = 0, find the value of ω in terms of , g and α.

Question 5 continues on page 9 – 8 –


Marks Question 5 (continued)

(d) In a chess match between the Home team and the Away team, a game is played on each of board 1, board 2, board 3 and board 4. On each board, the probability that the Home team wins is 0.2, the probability of a draw is 0.6 and the probability that the Home team loses is 0.2. The results are recorded by listing the outcomes of the games for the Home team in board order. For example, if the Home team wins on board 1, draws on board 2, loses on board 3 and draws on board 4, the result is recorded as WDLD. (i) How many different recordings are possible? 1 1 3

(ii) Calculate the probability of the result which is recorded as WDLD. (iii) Teams score 1 point for each game won, and 0 points for each game lost.
What is the probability that the Home team scores more points than the Away team? 1 a point for each game drawn 2


End of Question 5

– 9 –


Marks Question 6 (15 marks) Use a SEPARATE writing booklet. (a) In Δ ABC, ∠CAB = α, ∠ABC = β and ∠BCA = γ . The point O is chosen inside Δ ABC so that ∠OAB = ∠OBC = ∠OCA = θ , as shown in the diagram. A

θ

O B

θ

θ

C

(i)

Show that

OA sin ( β ? θ ) = . OB sin θ

1

(ii) (iii)

Hence show that sin3 θ = sin (α ? θ ) sin ( β ? θ ) sin (γ ? θ ) . Prove the identity cot x ? cot y = Hence show that sin ( y ? x ) . sin x sin y

2 1

(iv)

1

(cot θ
(v)

? cot α ) ( cot θ ? cot β ) ( cot θ ? cot γ ) = cosec α cosec β cosec γ . e 2

Hence find the value of θ when Δ ABC is an isosceles right triangle.

Question 6 continues on page 11

– 10 –


Marks Question 6 (continued)

(b) In an alien universe, the gravitational attraction between two bodies is proportional to x –3, where x is the distance between their centres. A particle is projected upward from the surface of a planet with velocity u at time t = 0. Its distance x from the centre of the planet satisfies the equation k x=? . x3 (i) Show that k = gR3 , where g is the magnitude of the acceleration due to gravity at the surface of the planet and R is the radius of the planet.

1

(ii) Show that v, the velocity of the particle, is given by v2 = gR3 ? gR ? u 2 . x2

3

(

)

(iii) It can be shown that x = (Do NOT prove this.) Show that if u ≥

R 2 + 2uRt ? gR ? u 2 t 2 .

(

)

2

gR the particle will not return to the planet.

(iv) If u < gR the particle reaches a point whose distance from the centre of the planet is D, and then falls back. (1) Use the formula in part (ii) to find D in terms of u, R and g. (2) Use the formula in part (iii) to find the time taken for the particle to return to the surface of the planet in terms of u, R and g. 1 1

End of Question 6

– 11 –


Marks Question 7 (15 marks) Use a SEPARATE writing booklet. The curves y = cos x and y = tan x intersect at a point P whose x-coordinate is α. (i) Show that the curves intersect at right angles at P. 1+ 5 . 2 3 2

(a)

(ii) Show that sec 2 α =

(b)

(i)

? π Let I n = ? sec n t dt , where 0 ≤ x < . Show that 2 ?0
In = sec n?2 x tan x n ? 2
+ I .
n ?1 n ? 1 n? 2

x

3

(ii) Hence find the exact value of

2
π

?3 4 ? sec t dt . ?0

Question 7 continues on page 13

– 12 –


Marks Question 7 (continued)

(c)

The sequence { xn } is given by x1 = 1 and xn+1 = 4 + xn for n ≥ 1. 1 + xn 4

(i) Prove by induction that for n ≥ 1 ?1 + α n ? ?, xn = 2 ? ? n? ?1 ? α ? 1 where α = ? . 3 (ii) Hence find the limiting value of xn as n → ∞.

1

End of Question 7

– 13 –


Marks Question 8 (15 marks) Use a SEPARATE writing booklet.

(a)

Suppose 0 ≤ t ≤

1 2

.

(i) Show that 0 ≤

2t 2 1? t
2

≤ 4t 2 .

2

(ii)

Hence show that 0 ≤

1 1 + ? 2 ≤ 4t 2 . 1+ t 1 ? t

1

(iii)

By integrating the expressions in the inequality in part (ii) with respect 1 to t from t = 0 to t = x (where 0 ≤ x ≤ ) , show that 2 ? 1+ x ? 4x 3 0 ≤ loge ? . ? ? 2x ≤ ?1 ? x ? 3

2

(iv)

Hence show that for 0 ≤ x ≤

1 2
3

1

4x ? 1+ x ? ?2x ≤e 3 . 1≤? ?e ?1 ? x ?

Question 8 continues on page 15

– 14 –


Marks Question 8 (continued)

(b)

For x > 0, let ? (x) = xne–x , where n is an integer and n ≥ 2. y

O (i)

a

b

x 4

The two points of inflexion of ? (x) occur at x = a and x = b, where 0 < a < b. Find a and b in terms of n. Show that ? ?1 + ?( b ) ? = ?( a ) ? 1 ? ? ? 1 ? ? n ? ?2 e 1 ? ? n?
n

(ii)

2

n

.

(iii)

Using the result of part (a) (iv), show that ?( b ) 1≤ ≤ e3 n . ?( a )
4

2

(iv)

What can be said about the ratio

?( b ) as n → ∞ ? ?( a )

1

End of paper

– 15 –


STANDARD INTEGRALS ? n ? x dx ? ?1 ? x dx ? ? ax ? e dx ? ? ? cos ax dx ? ? ? sin ax dx ? ? 2 ? sec ax dx ? ? ? sec ax tan ax dx ? 1 ? dx ? 2 ? a + x2 1 ? dx ? 2 ? a ? x2 1 ? dx ? 2 ? x ? a2 1 ? dx ? 2 ? x + a2 = 1 n+1 x , n ≠ ?1; x ≠ 0, if n < 0 n +1

= ln x, x > 0

=

1 ax e , a≠0 a 1 sin ax, a ≠ 0 a

=

1 = ? cos ax, a ≠ 0 a 1 tan ax, a ≠ 0 a 1 sec ax, a ≠ 0 a 1 x tan ?1 , a ≠ 0 a a

=

=

=

x = sin ?1 , a > 0, ? a < x < a a

= ln x + x 2 ? a 2 , x > a > 0

( (

)

= ln x + x 2 + a 2

)
x>0

NOTE : ln x = loge x,

– 16 – ? Board of Studies NSW 2006


推荐相关:

悉尼06年HSC数学B考试试卷.pdf

悉尼06年HSC数学B考试试卷悉尼06年HSC数学B考试试卷隐藏>>


悉尼06年HSC数学A考试试卷.pdf

悉尼06年HSC数学A考试试卷悉尼06年HSC数学A考试试卷 2006 H I


悉尼07年HSC数学A考试试卷.pdf

悉尼07年HSC数学B考试试卷 20页 免费 悉尼06年HSC数学A考试试卷 1


2009-hsc-exam-mathematics-extension-1.pdf

extension-1_财会/金融考试_资格考试/认证_教育专区...2009年HSC数学拓展1 悉尼 2009 H I G H E R ...2 2 1 (b) Consider the function ( x ) = ...


2018年中考数学一轮基础复习试卷专题01:实数的有关概念....doc

2018年中考数学一轮基础复习试卷专题01:实数的有关概念及运算(含答案)_中考_...时数,负数表示同一时 刻比北京时间晚的时数): 城市 悉尼 纽约 13 ) B....


猪生产试卷0809b.doc

举报文档 hsc136贡献于2012-06-01 0.0分 (0人评价)暂无用户评价 我要评价...河南农业大学 20082009 学年第一学期 《猪生产学》考试试卷(B 卷)题号 ...


理论力学试题B(07.12)初稿.doc

理论力学试题B(07.12)初稿 - 系领导 审批并签名 B卷 广州大学 2007- 08 学年第 1 学期试卷 课程: 理论力学 院系:土木工程学院 专业: 考试形式: (闭卷,...


澳洲教育系统_英语考试_外语学习_教育专区.doc

学费举例: 悉尼著名的女子私校 Pymble Ladies College 在 2009 年的学费情况 ...在 HSC考试排名里我们就会 看到,有一大半的 Partial Selective High 综合...


体育教师招聘试卷(考试题)及答案2.doc

体育教师招聘试卷(考试题)及答案2 - 小学体育教师专业知识考试题及答案 (一)选择 题 1、2004年的夏季奥运会在( B )举行。 A、悉尼 B、雅典 C、巴黎 D、...


八年级地理期中考试试卷.doc

八年级地理期中考试试卷(七年级上下册)一、选择题(...( ) ①悉尼的人们正在


PLC(单选)_数学_自然科学_专业资料.doc

PLC(单选)_数学_自然科学_专业资料。单位___ 考号...___ 试卷满分 21316 分,考试时间 60 分钟;书写要...SC0~HSC5 B. HSC0~HSC4 C. HSC0~HSC1 D. ...


2018年七年级第二学期地理期末考试试卷.doc

2018年七年级第二学期地理期末考试试卷 - 20182018 学年度第二学期七年级地理期终试卷 (命题 马富平) 10.澳大利亚的首都是( A.墨尔本 B.堪培拉 ) C.悉尼...


贵阳市2014届初中毕业生学业考试试卷.doc

贵阳市 2014 届初中毕业生学业考试试卷 地理生物...甲地 B.乙地 C.丙地 D.丁地 2 下列叙述中,...“地球一小时”关灯活动,此时北京刚进人春季,悉尼进...


2017年山东省聊城市中考数学试卷【答案加解析】.doc

2017年山东省聊城市中考数学试卷【答案加解析】 - 2017 年山东省聊城市中考数学试卷 一.选择题 1.(2017?聊城)64 的立方根是( ) A.4 B.8 C.±4 D.±8...


2017年澳洲高中升大学.doc

新南威尔士悉尼地区的高中生升大学 高中毕业的合格学生,都将获得一张高中...HSC 成绩由学生的考试成绩和评估成绩平均计算得来,总评等级分由教育局根据 所有...


2016年澳洲高中排名.doc

据《悉尼晨锋报》报道称,ATAR 下滑部分原因在于今年...新州中学毕业会考表现排名: Distinguished Achi HSC ...Memorial 中学成为 2014 年在这次考试中表现最佳的...


交大附中2014-2015学年第一学期高三地理期中考试试题.doc

交大附中2014-2015学年第一学期高三地理期中考试试题_数学_高中教育_教育专区。...悉尼白昼将继续变长 B.雅典正值多雨季节 C.北京受亚洲低压影响 D.伦敦正午...


从法拉第圆盘探讨两种电磁感应表达式的使用_数学_自然科学_专业....pdf

从法拉第圆盘探讨两种电磁感应表达式的使用_数学_自然...7 文献标 识码 B 关键词 法拉 第 圆盘 电磁 ...文档贡献者 hsc1230916 贡献于2015-06-11 ...


西门子S7-200PLC试题及答案_从业资格考试_资格考试/认证_教育专区.doc

西门子 S7-200PLC 试题(1) 一、填空题(20 分) 1.S7-200 系列 PLC 的...A 0002 B 0003 C 0001 D 0004 13 高速计数器 HSC0 有( )种工作方式。 ...


设计悉尼歌剧院的建筑师是( )。 A.斯特林 B.福斯特 C.....doc

设计悉尼歌剧院的建筑师是( )。 A.斯特林 B.福斯特 C.罗杰斯 ...历年模拟试卷理科数学 北京朝阳区2016年高三第一次模拟考试 理科数学 北京海淀区...

网站首页 | 网站地图
All rights reserved Powered by 酷我资料网 koorio.com
copyright ©right 2014-2019。
文档资料库内容来自网络,如有侵犯请联系客服。zhit325@126.com