koorio.com
海量文库 文档专家
当前位置:首页 >> 数学 >>

1.4.2正弦函数、余弦函数的性质精品课件


1.4.2正弦函数、余弦函数的性质

ks5u精品课件

教学目的: 1、掌握正弦函数和余弦函数的性质 2、会求简单函数的定义域、值域、最小正周期 和单调区间 3、了解从特殊到一般,从一般到特殊的辩证思 想方法和分析、探索、化归、类比的科学研究 方法在解决数学问题中的应用 教学重点、难点:

重点:正、余弦函数的性质

难点:正、余弦函数性质的理解与应用

? ? ? ? à ? ? ? ? ? ó ? ? ? ? ? ? ? .? ? ? ? ? ? ? ? ? ?

y

1-

? 6?
-

? 4?
-

? 2?
-

o
-1 -

2?

4?
-

6?
-

-

-

x

y

1-

? 6?
-

? 4?
-

? 2?
-

o
-1 -

2?

4?
-

6?
-

-

-

x

想一想

y
1-

请观察正弦曲 线、余弦曲线 的形状和位置, 说出它们的性 质。

y=sinx
-1

y=cosx
3? 2

y

o

? 2

-

-

π



x

-1 ks5u精品课件

函数 性质 定义域 值域

y=sinx R [-1,1] 仅当

y=cosx R [-1,1] 仅当

最大值

x?

?
2

? 2k? , k ? Z ? 2k? , k ? Z

x ? 2k? , k ? Z
时取得最大值1

时取得最大值1 最小值 奇偶性 仅当 ?

x??

仅当

时取得最小值-1 奇函数

2

x ? (2k ? 1)? , k ? Z
时取得最小值-1 偶函数

单调性

例:求下列函数的周期 (1) y ? 3 cos x, x ? R (2) y ? sin 2 x, x ? R

1 ? (3) y ? 2 sin( x ? ) 2 6 解:(1)∵cos(x+2π)=cosx, ∴3cos(x+2π)=3cosx ∴函数y= 3cosx,x∈R的周期为2π (2)设函数y=sin2x, x∈R的周期为T,则 sin2(x+T)=sin(2x+2T)=sin2x 2? ∵正弦函数的最小正周期为2π ,∴ 2T ? 2?得T ? ?? 2 ∴ y=sin2x ,x∈R的周期为π 1 ? (2)设函数 y ? 2 sin( x ? ), x ? R 的周期为T,则 2 6 ?? ? 1 ? ?? ?1 ?1 ?1
y ? 2 sin ? ( x ? T ) ? ? ? 2 sin ? x ? ? T ? ? 2 sin? x ? ? 6? 6 2 ? 6? ?2 ?2 ?2

1 2? ? 4? ∵正弦函数的最小正周期为2π ,∴ T ? 2?得T ? 1 2 1 ? 2 ∴函数 y ? 2 sin( x ? ), x ? R 的周期为4π 2 6

例2、不通过求值,指出下列各式大于0还是小于0. ? 17? ? 23? ) (1)sin(- )-sin(- ); (2)cos(- )-cos(- 18 4 10 5 ? ? ? ? 解:(1)∵- <- <- < 2 18 10 2 ? ? 且函数y=sinx,x∈[- , ]是增函数. ? ? 2 2 ∴sin(- )<sin(- ) 10 18

? ? 即sin(- )-sin(- )>0 18 10

23? (2)cos(- )=cos 5 17? cos(- )=cos 4

23? =cos 5

3? ? ∵0< < <π 5 4

? 17? =cos 4 4

3? 5

且函数y=cosx,x∈[0,π]是减函数 3? ? ∴cos <cos 5 4

3? ? 即cos -cos <0 5 4 23? 17? ∴cos(- )-cos(- 4 )<0 5

例3.(1)函数y=sin(x+

? (2)函数y=3sin( -2x)在什么区间是减函数? 3
解:(1)函数y=sinx在下列区间上是增函数:

? )在什么区间上是增函数? 4

? ? ∴函数y=sin(x+ )为增函数,当且仅当2kπ- 2 4 ? ? <x+ <2kπ+

? ? 2kπ - <x<2kπ + (k∈Z) 2 2

? ? (k∈Z)为所求. 即2kπ- <x<2kπ+ 4 3

4

2

? ? (2)∵y=3sin( -2x)=-3sin(2x- ) 3 3 ? ? ? 由2kπ - ≤2x- ≤2kπ + 2 2 3 ? 5? 得kπ - ≤x≤kπ + (k∈Z)为所求. 12 12 ? 或:令u= -2x,则u是x的减函数 3 ? ? 又∵y=sinu在[2kπ- ,2kπ+ ](k∈Z)上为增函数, 2 2 ? ? ∴原函数y=3sin( -2x)在区间[2kπ- ,2kπ+ ? ]上递减.

? ? 设2kπ - ≤ -2x≤2kπ + 3 2? 2 5? 解得kπ - ≤x≤kπ + (k∈Z) 12 12 ? ? 5? ∴原函数y=3sin( -2x)在[kπ- ,kπ+ ](k∈Z)上单调递减. 12 3 12

3?

2

2

四、课堂练习
P38练习题1、2

小结:
本节课我们学习了用单位圆中的正弦线 作正弦函数,通过诱导公式得到余弦函 数的图象,用五点法作正弦函数和余弦 函数的简图

ks5u精品课件

六、课后作业:
P52习题第1题

ks5u精品课件


推荐相关:

1.4.2-正弦函数、余弦函数的性质(精品)

1.4.3 正弦函数余弦函数的性质(2) 教材分析本节内容是数学 4 第一章 三角...拓展点:如何利用正、余弦函数的有界性求最值. 教具准备 课堂模式 多媒体课件...


1.4.2正弦函数余弦函数的性质

1.4.2正弦函数余弦函数的性质_高二数学_数学_高中教育_教育专区。附件: 教学...利用多媒体课件,动态演示: 探究 1:奇偶性与对称性 教师规范书写形式。时间:约...


1.4.2正弦函数、余弦函数的性质 (一)

搜 试试 7 帮助 全部 DOC PPT TXT PDF XLS 百度文库 教育专区 高中教育 ...1.4.2正弦函数余弦函数的性质 (一)_数学_高中教育_教育专区。制作人 审核人...


1.4.2正弦函数余弦函数的性质1(教学设计)

SCH 高中数学(南极数学)同步教学设计 1.4.2(1)正弦余弦函数的性质(教学设计) 教学目的: 知识目标:要求学生能理解周期函数,周期函数的周期和最小正周期的定义;...


1.4.2正弦函数余弦函数的性质(教、学案)

§1.4.2 正弦函数余弦函数的性质【教材分析】 《正弦函数和余弦函数的性质》 是普通高中课程标准实验教材必修4中的内容, 是正弦 函数和余弦函数图像的继续, 本课...


1.4.2 正弦函数、余弦函数的性质

1.4.2 正弦函数余弦函数的性质(一) 知识与技能: 1.要求学生能理解周期函数...PPT、学案 教学目标(知 识与能力、过 程与方法、情 感态度与价 值观) : ...


1.4.2正弦函数、余弦函数的性质2

搜试试 3 帮助 全部 DOC PPT TXT PDF XLS 百度文库 教育专区 高中教育 数学...1.4.2正弦函数余弦函数的性质2_数学_高中教育_教育专区。高一数学导学案 编制...


1.4.2正弦函数、余弦函数的性质(2课时)

搜试试 3 帮助 全部 DOC PPT TXT PDF XLS 百度文库 教育专区 高中教育 数学...1.4.2正弦函数余弦函数的性质(2课时)_高一数学_数学_高中教育_教育专区。...


1.4.2 正弦函数、余弦函数的性质(知识梳理+练习+答案)

1.4.2 正弦函数余弦函数的性质(知识梳理+练习+答案)_高一数学_数学_高中教育_教育专区。第一章 三角函数 必修 4 1.4.2 正弦函数余弦函数的性质 知识梳理:...

网站首页 | 网站地图
All rights reserved Powered by 酷我资料网 koorio.com
copyright ©right 2014-2019。
文档资料库内容来自网络,如有侵犯请联系客服。zhit325@126.com