koorio.com
海量文库 文档专家
相关标签
当前位置:首页 >> 数学 >>

第二次课 导数的应用训练(1)学生


导数的应用训练(1) 1. 函数的单调性与导数
3 2

1.函数 f ( x) ? x ? ax ? 3x ? 9 ,已知 f ( x) 在 x ? ?3 时取得极值,则 a =( (A)2 (B)3 (C)4 (D)5 2.设 f ( x) ? x ln x ,若 f '( x0 ) ? 2 ,则 x0 ? ( A. e
2

)



B. e
3 2

C.

ln 2 2

D. ln 2 ) D. (0,2) )

3.函数 f ( x) ? x ? 3x ? 1是减函数的区间为( A. ( 2,?? ) B. ( ??,2) C. ( ??,0)

4.设函数 f ( x) ? 2 x ?

1 ? 1( x ? 0), 则 f ( x) ( x

A.有最大值 B.有最小值 C.是增函数 D.是减函数 5.已知对任意实数 x 有 f(-x)=-f(x),g(-x)=g(x),且 x>0 时,f’(x)>0,g’(x)>0, 则 x<0 时( ) A f’(x)>0,g’(x)>0 B f’(x)>0,g’(x)<0 C f’(x)<0,g’(x)>0
3 2

D f’(x)<0,g’(x)<0 )

6. f ( x) ? x ? 3x ? 2 在区间 ? ?1,1? 上的最大值是( (A)-2 (B)0 (C)2 (D)4

7.若函数 f(x)=x2+bx+c 的图象的顶点在第四象限,则函数 f /(x)的图象是( y y y

) y

o A

x

o B

x

o C

x

o D

x

8 . 设 f ( x), g ( x) 分 别 是 定 义 在 R 上 的 奇 函 数 和 偶 函 数 , g ( x) ? 0, , 当 x ? 0 时 , 且 f ?( x) g ( x)? f ( x) ? g ( x? ) 0, A.(?3,0) ? (3,??) ) f (?3) ? 0, 则不等式 f ( x) / g ( x) ? 0 的解集是 ( B.(?3,0) ? (0,3) C.(??,?3) ? (3,??) D.(??,?3) ? (0,3)

9. 对于 R 上可导的任意函数 f(x) ,若满足(x-1) f ? ?0,则必有( ) (x) A.f(0)+f(2)?2f(1) B. f(0)+f(2)?2f(1) C. f(0)+f(2)?2f(1) D. f(0)+f(2)?2f(1) 10.设 f ?( x) 是函数 f(x)的导函数,y= f ?( x) 的图象如图所示,则 y= f(x)的 图象最有可能的是( )

1

2.导数的几何意义
1.与直线 2 x ? y ? 4 ? 0 的平行的抛物线 y ? x 的切线方程是
2





A. 2 x ? y ? 3 ? 0
2

B. 2 x ? y ? 3 ? 0 C. 2 x ? y ? 1 ? 0 D . 2 x ? y ? 1 ? 0 )

2.设曲线 y ? ax 在点(1, a )处的切线与直线 2 x ? y ? 6 ? 0 平行,则 a ? ( A.1 B.

1 2

C. ?

1 2

D. ?1

3.设曲线 y ? A.2

x ?1 在点 (3, 2) 处的切线与直线 ax ? y ? 1 ? 0 垂直,则 a ? ( x ?1 1 1 B. C. ? D. ?2 2 2



4.设曲线 y ? eax 在点 (0, 1) 处的切线与直线 x ? 2 y ? 1 ? 0 垂直,则 a ?



5.如图, 函数 f ( x) 的图象是折线段 ABC , 其中 A,B,C 的 坐标分别为 (0 , ?) ,,,,, 4) (2 0) ( 6则 4)f(f ( 0)
?x ?0

y 4 3 2 1 O A C



lim

f (1 ? ?x) ? f (1) ? ?x

. (用数字作答)

B 1 2 3 4 5 6

x

6.直线 y ?

1 x ? b 是曲线 y ? ln x ? x ? 0 ? 的一条切线,则实数 b= 2
3



7. 在函数 y ? x ? 8 x 的图象上,其切线的倾斜角小于 A.3 B.2 C.1 D.0

? 的点中,坐标为整数的点的个数 4

8.曲线 y ? x 在点(1,1)处的切线与 x 轴、直线 x ? 2 所围成的三角形的面积为
3

.

2

9.已知函数 f ( x) ? x ? 12 x ? 8 在区间 [?3,3] 上的最大值与最小值分别为 M , m ,
3

则 M ? m ? _____________;

3.导数的实际应用
1. 已知函数 f(x)=-x3+3x2+9x+a. (I)求 f(x)的单调递减区间; (II)若 f(x)在区间[-2,2]上的最大值为 20,求它在该区间上的最小值.

2.设函数 f ? x ? ? x ? bx ? cx( x ? R ) ,已知 g ( x) ? f ( x) ? f ?( x) 是奇函数。
3 2

(Ⅰ)求 b 、 c 的值。

(Ⅱ)求 g ( x) 的单调区间与极值。

3.已知函数 f ( x) ? x ? bx ? cx ? d 的图象过点 P(0,2) ,且 在点 M(-1,f(-1) )处的切线方程为 6 x ? y ? 7 ? 0 . (Ⅰ)求函数 y ? f ( x) 的解析式; (Ⅱ)求函数 y ? f ( x) 的单调区间.
3 2

3

4.已知函数 f ( x) ? ax ? bx ? cx 在点 x0 处取得极大值 5 ,其导函数 y ? f '( x) 的图象经过
3 2

点 (1, 0) , (2, 0) ,如图所示.求: (Ⅰ) x0 的值; (Ⅱ) a, b, c 的值.

5. 设 a ? R ,函数 f ( x) ? ax ? 3x . (Ⅰ)若 x ? 2 是函数 y ? f ( x) 的极值点,求 a 的值;
3 2

(Ⅱ)若函数 g ( x) ? f ( x) ? f ?( x),x ?[0, 2] ,在 x ? 0 处取得最大值,求 a 的取值范围.

6.(全国卷Ⅱ)设 a 为实数,函数 f ( x) ? x 3 ? x 2 ? x ? a. (Ⅰ)求 f ( x) 的极值. (Ⅱ)当 a 在什么范围内取值时,曲线 y ? f ( x)与x 轴仅有一个交点.

4


推荐相关:

《导数的综合应用》说课

高三数学《第22课 导数与函... 5页 10财富值 说课教案二 导数的应用(一.....紧接着又通过变式训练更加加深了学生对函数的单调性和导数的关系的理解同时也为...


导数及其应用 复习课 教案

2.与直线、圆锥曲线、分式、含参数的二次不等式等结合在一起考查,题型...本节课是在学习了导数的概念、运算、导数的应用的基础上来进行小结复习,学生...


导数及其应用复习课学案

暂无评价|0人阅读|0次下载|举报文档 导数及其应用复习课学案_数学_高中教育_教育...变式训练 1. 求 y= x 在 x=x0 处的导数.? 例 2.质点运动的方程为...


导数及其应用通课1

导数及其应用课1 隐藏>> 集体通课记录 数学组 2012 年 22 日 备课...梁福霞:理解函数的平均变化率 李晓明: 层)学生只需课本上的例题及练习能掌握并...


导数的应用复习课 优秀教案

复习课: 导数及其应用教学目标重点:能利用导数研究...能力. 教育点:求极值和最值的步骤,需要具体练习和...2 【设计说明】 第一步:自主复习,学生用 6 分钟...


导数及其应用复习课(一)

选修1-1 第三章教学目标 导数及其应用复习课(一)...锻炼学生的思维品质; 2 通过研究函数的单调性、极值...一 、基础练习 3 2 1、曲线 y=x -2x +3x 在...


《导数在研究函数中的应用—函数的单调性与导数》说课稿

性和导数”这节新知识是在教材选修 11,第三章...在练习二次不等式、含参数二次不等式的问题 后,...分类讨论的数学思想的应用,培养学生的探究精神,提高...


《导数的综合应用》说课稿及教学设计

导数几何意义的应用。延展练习是 为了锻炼学生的综合能力,发扬 学 生自主学习,...第一个问作 在上题求最值之后的再度 引申为恒成立问题。使习题的 ...


第二章 第7节 导数的综合应用-学生版

第二章 第7节 导数的综合应用-学生版_其它课程_高中教育_教育专区。2017全套...的导函数,f(-1)=0,当时, ,则使得 巩固训练一、选择题 1.若直线 y=m ...


导数的概念说课稿

、教材分析 导数的概念是高中新教材人教 A 版选修 2-2 第一1.1.2 的内容, 是在学生学习了物理 的平均速度和瞬时速度的背景下,以及前节课所学的平均...

网站首页 | 网站地图
All rights reserved Powered by 酷我资料网 koorio.com
copyright ©right 2014-2019。
文档资料库内容来自网络,如有侵犯请联系客服。zhit325@126.com